k-NN Graph Construction: a Generic Online Approach

نویسنده

  • Wan-Lei Zhao
چکیده

Nearest neighbor search and k-nearest neighbor graph construction are two fundamental issues arise from many disciplines such as information retrieval, data-mining, machine learning and computer vision. Despite continuous efforts have been taken in the last several decades, these two issues remain challenging. They become more and more imminent given the big data emerges in various fields and has been expanded significantly over the years. In this paper, a simple but effective solution both for k-nearest neighbor search and k-nearest neighbor graph construction is presented. Namely, these two issues are addressed jointly. On one hand, the k-nearest neighbor graph construction is treated as a nearest neighbor search task. Each data sample along with its k-nearest neighbors are joined into the k-nearest neighbor graph by sequentially performing the nearest neighbor search on the graph under construction. On the other hand, the built knearest neighbor graph is used to support k-nearest neighbor search. Since the graph is built online, dynamic updating of the graph, which is not desirable from most of the existing solutions, is supported. Moreover, this solution is feasible for various distance measures. Its effectiveness both as a k-nearest neighbor construction and k-nearest neighbor search approach is verified across various datasets in different scales, various dimensions and under different metrics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable $k$-NN graph construction

The k-NN graph has played a central role in increasingly popular data-driven techniques for various learning and vision tasks; yet, finding an efficient and effective way to construct k-NN graphs remains a challenge, especially for large-scale high-dimensional data. In this paper, we propose a new approach to construct approximate k-NN graphs with emphasis in: efficiency and accuracy. We hierar...

متن کامل

Fast Online k-nn Graph Building

In this paper we propose an online approximate k-nn graph building algorithm, which is able to quickly update a k-nn graph using a flow of data points. One very important step of the algorithm consists in using the current distributed graph to search for the neighbors of a new node. Hence we also propose a distributed partitioning method based on balanced k-medoids clustering, that we use to op...

متن کامل

An Output-Sensitive Approach for the L 1/L ∞ k-Nearest-Neighbor Voronoi Diagram

This paper revisits the k-nearest-neighbor (k-NN) Voronoi diagram and presents the first output-sensitive paradigm for its construction. It introduces the k-NN Delaunay graph, which corresponds to the graph theoretic dual of the k-NN Voronoi diagram, and uses it as a base to directly compute the k-NN Voronoi diagram in R. In the L1, L∞ metrics this results in O((n + m) log n) time algorithm, us...

متن کامل

EFANNA : An Extremely Fast Approximate Nearest Neighbor Search Algorithm Based on kNN Graph

Approximate nearest neighbor (ANN) search is a fundamental problem in many areas of data mining, machine learning and computer vision. The performance of traditional hierarchical structure (tree) based methods decreases as the dimensionality of data grows, while hashing based methods usually lack efficiency in practice. Recently, the graph based methods have drawn considerable attention. The ma...

متن کامل

L1-graph construction using structured sparsity

As a powerful model to represent the data, graph has been widely applied to many machine learning tasks. More notably, to address the problems associated with the traditional graph construction methods, sparse representation has been successfully used for graph construction, and one typical work is L1graph. However, since L1-graph often establishes only part of all the valuable connections betw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018